

TOKYO | 12 – 15 JUNE, 2012

IPv4 over IPv6 技術の最新動向と標準化

日本インターネットエクスチェンジ株式会社 石田慶樹/馬渡将隆

Agenda

- 1. IPv4 over IPv6 技術の必要性
- 2. 標準化に関する最新動向
- 3. 実装に関する最新動向

Agenda

1. IPv4 over IPv6 技術の必要性

- 2. 標準化に関する最新動向
- 3. 実装に関する最新動向

IPv4 over IPv6 技術とは

孤立している IPv4 ネットワーク同士を IPv6 ネットワーク経由で橋渡し する技術 IPv6 Network Network Network

なぜ、IPv6 が必要か?

- ◆The Internet に接続するノードが急増。
- ◆ノードを識別するための IP アドレスが IPv4 では足らなくなってきた。
- ◆IPv4 アドレスを NAPT44 で共有しても限界がある。
- ◆識別子 (IP アドレス) のビットを拡げた IPv6 が必要。

- ◆IPv4 と IPv6 には互換性が無い
 - ■IPv4 のノードと IPv6 のノードは直接、相互接続できない
- ◆一瞬にして IPv6 が拡がる訳ではない
 - ■IPv6 をサポートできないノードはしばらく残る
 - ■既存サービスに IPv6 を導入する対応コストのハードル

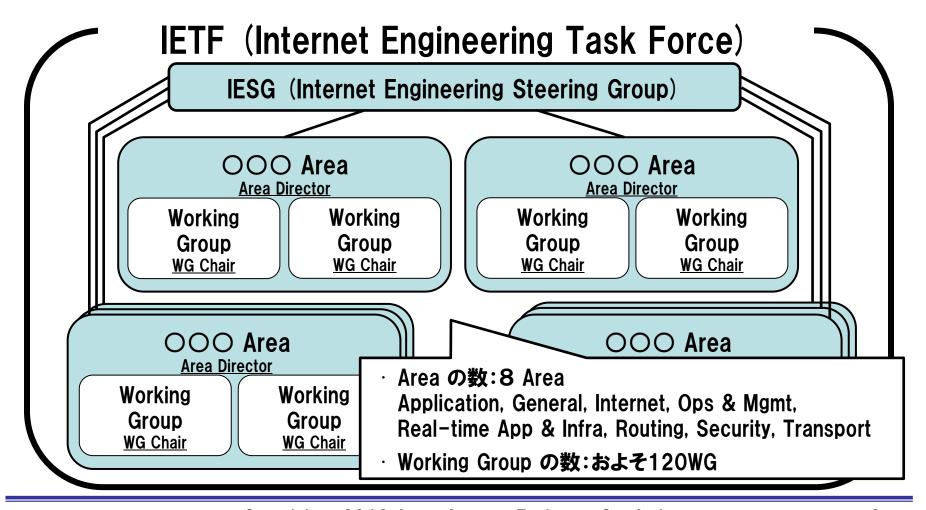
IPv4 と IPv6 が共存できる仕組み

が必要

- ◆IPv4 と IPv6 には互換性が無い
 - ■IPv4 のノードと IPv6 のノードは直接、相互接続できない
- ◆一瞬にして IPv6 が拡がる訳ではない
 - ■IPv6 をサポートできないノードはしばらく残る
 - ■既存サービスに IPv6 を導入する対応コストのハードル

IPv4 over IPv6 技術

が必要


Agenda

- 1. IPv4 over IPv6 技術の必要性
- 2. 標準化に関する最新動向
- 3. 実装に関する最新動向

IETF の組織構成

標準化プロセス

Document Category

RFC

- · <u>Standards Track</u>:標準化仕様 (Specification)
- · BCP:Best Current Practice (運用上の奨励、一部仕様を含む場合もあり)
- · Informational:仕様ではない。コミュニティのルールなどを含む情報

Experimental:実験成果・研究成果 RFC Editor Queue に入り、その後 RFC として発行される

IETF Last Call

WG Chair の承認を得た後、Area Director および IESG の評価が行われる。

Working Group Last Call

|-D の内容について、WG 内の議論(ML, Meeting)で Consensus が取れ、I-D の内容が | 固まった事を確認したところで WG Last Call となる。

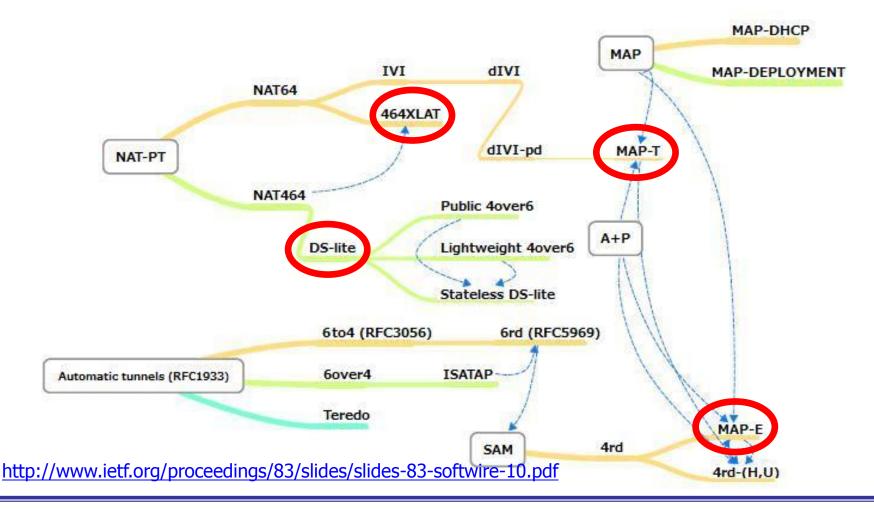
Working Group
Document
(Internet-Draft)

WG での議論(ML, Meeting)を考慮し、WG の Discussion Item としてふさわしいと WG Members が判断した場合に Working Group Document として承認される。

Individual
Document
(Internet-Draft)

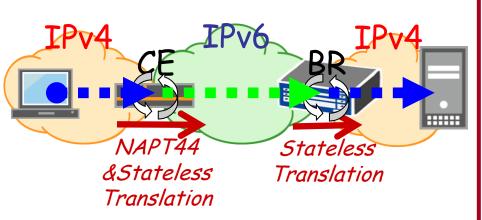
Working Group

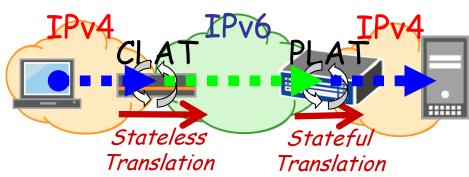
-目でわかる共存技術



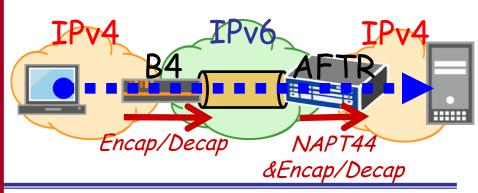
http://www.apricot2012.net/_data/assets/pdf_file/0016/45241/120229.apops-v4-life-extension.pdf

IPv4 over IPv6 技術の進展

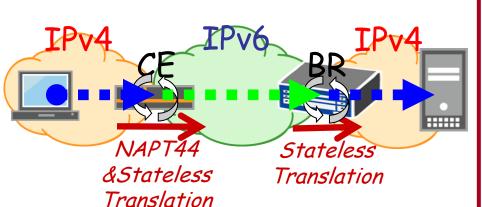



IPv4 over IPv6 技術別の概観

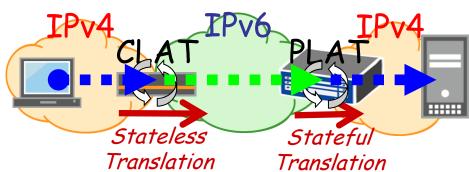
MAP-T



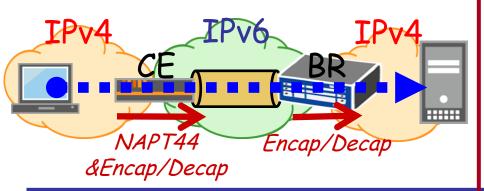
MAP-E


IPV4 CE BR NAPT44 Encap/Decap &Encap/Decap

DS-Lite

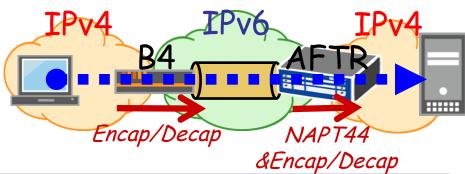


IPv4 over IPv6 技術別の概観

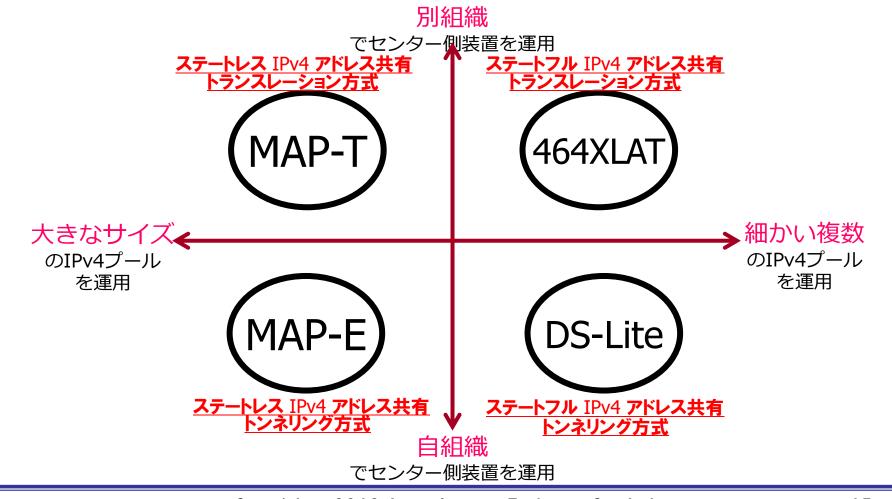


464XLAT

ステートフル IPv4 アドレス共有 トランスレーション方式



MAP-E ステートレス IPv4 アドレス共有トンネリング方式


DS-Lite

ステートフル IPv4 アドレス共有 トンネリング方式

IPv4 over IPv6 技術別の運用最適エリア

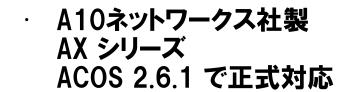
IPv4/IPv6 移行·共存技術

		 		- I J - J - J - I' I' J	
方式 比較点	NAT444	DS-Lite	MAP-E	MAP-T	464XLAT
IPv4/IPv6 アドレス数	・ IPv4(G)アドレス数の制約が無い ・ IPv4 shared Addressが必要	・ IPv4(G)/IPv6 アドレス数の 制約が無い	・ IPv4(G)/IPv6 アドレス数の 制約がある	・ IPv4(G)/IPv6 アドレス数の制 約がある	・ IPv4(G)/IPv6 アドレス数の制 約が無い
ユーザ側 装置 (HGW)	・機能追加不要	・トンネル終端 の機能追加が 必要	・トンネル終端 および拡張ア ドレス処理の 機能追加が必 要	ステートレス・トランスレーションおよび拡張アドレス処理の機能追加が必要	・ ステートレス・ト ランスレーショ ンの機能追加 が必要
センター側 装置	・製品あり	・製品あり	・製品無し	・製品無し	・製品あり
トラフィック 制御	・ DPI が不要	・ DPI が必要	・ DPI が必要	・ DPI が不要	・ DPI が不要
コンテンツ提供事業者	・ ソースポート記 録のログ必要	・ ソースポート記 録のログ必要	・ ソースポート記 録のログ必要	・ ソースポート記 録のログ必要	・ ソースポート記 録のログ必要

標準化に関するドキュメント

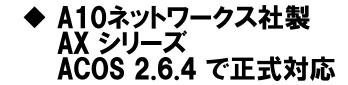
- ◆ RFC 6145 (IP/ICMP Translation Algorithm)
 - http://tools.ietf.org/html/rfc6145
 - IP パケットヘッダの変換、ICMP パケットヘッダの変換について記述をしている RFC
- ◆ RFC 6146 (Stateful NAT64)
 - http://tools.ietf.org/html/rfc6146
 - 複数の IPv6 クライアントで IPv4 アドレスを共有する Stateful XLATE について記述をしている RFC
- Internet-Draft: 464XLAT (Combination of Stateful and Stateless Translation)
 - http://tools.ietf.org/html/draft-ietf-v6ops-464xlat
 - RFC 6145 と RFC 6146 を組み合わせた IPv4 ⇔ IPv6 ⇔ IPv4 アドレス変換による IPv4 アドレス共有についてまとめた Internet-Draft
- ◆ おまけ
 - ■「IPv4/IPv6共存環境下におけるIXの役割」
 - 情報処理 2012年4月号(VOL.53 NO.4) 428~436ページ

Agenda


- 1. IPv4 over IPv6 技術の必要性
- 2. 標準化に関する最新動向
- 3. 実装に関する最新動向

DS-lite (AFTR) 対応製品

ジュニパーネットワークス社製 MX/M/T シリーズ JUNOS 10.4 で正式対応



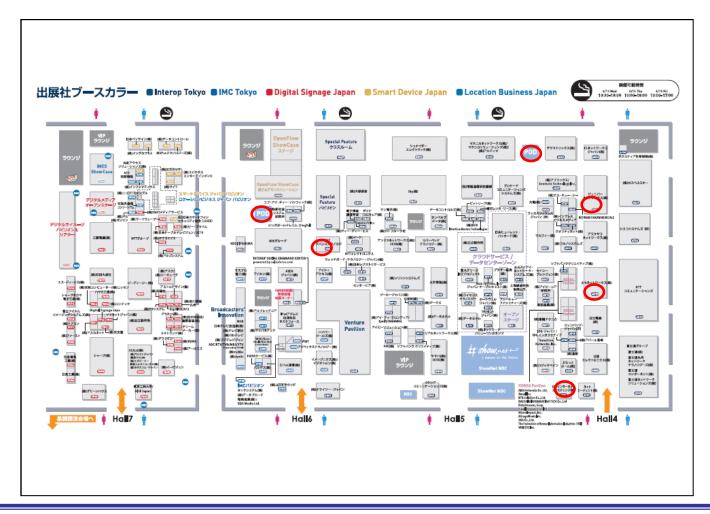
· シスコシステムズ社製 Cisco CRS IOS-XR 4.2.1 で正式対応

464XLAT (PLAT) 対応製品

◆ ジュニパーネットワークス社製 SRX シリーズ JUNOS 10.4 で正式対応

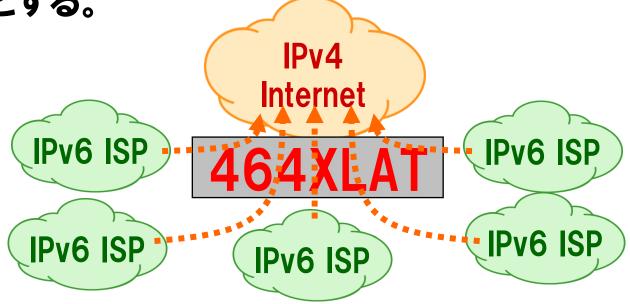
◆ F5ネットワークス社製 BIG-IP シリーズ OS 11.1 で正式対応

◆ シスコシステムズ社製 Cisco ASR1000 シリーズ IOS-XE 3.4.0S で正式対応

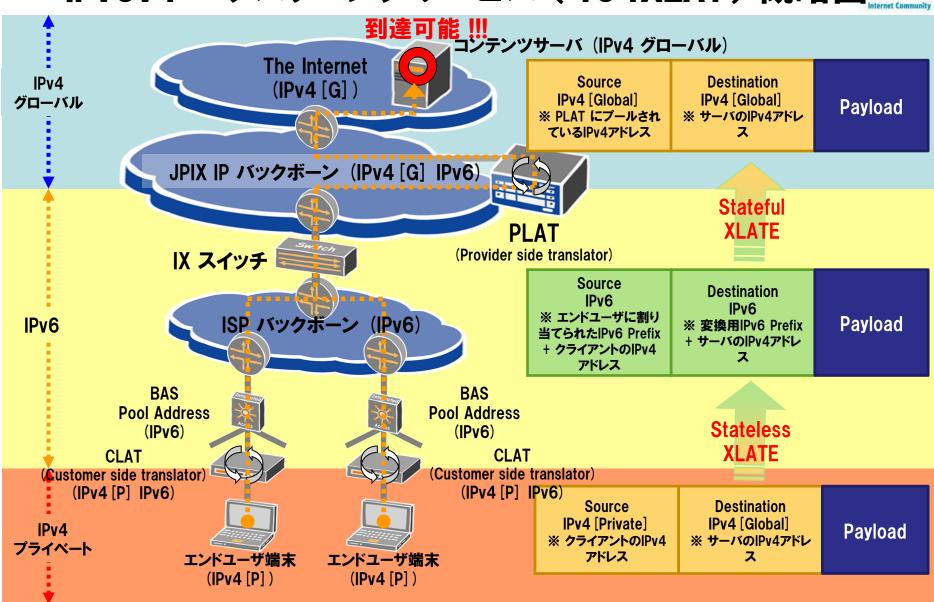

その他の実装状況

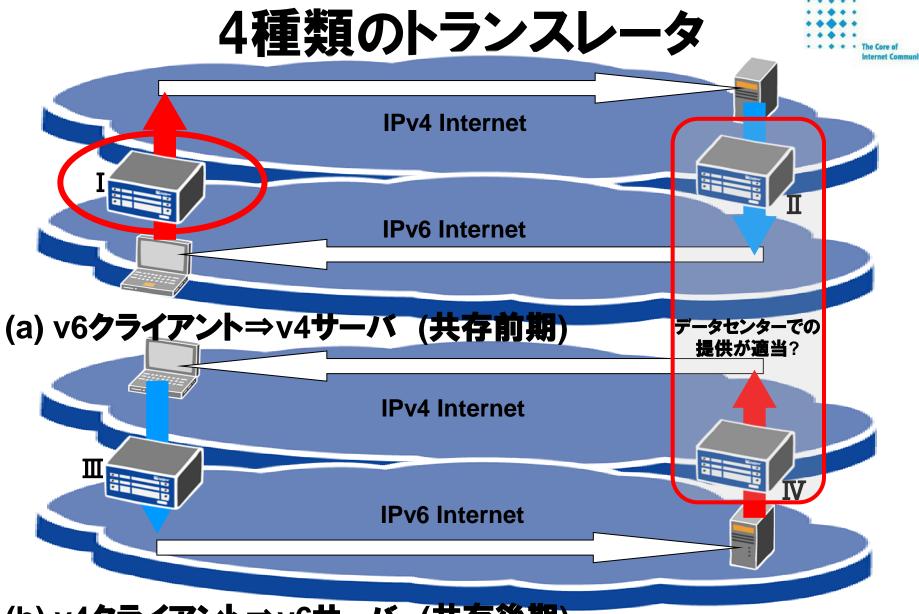
- ◆センター側機器実装
 - DS-Lite
 - ISC AFTR (OSS)
 - **■** 464XLAT
 - Ecdysis NAT64 (OSS), linuxnat64 (OSS), OpenBSD PF (OSS)
- ◆エンドユーザ側機器実装
 - **DS-Lite**
 - D-Link DIR-835
 - **464XLAT**
 - NEC AccessTechnica CL-AT1000P ※ブース展示中
 - Android-clat (OSS) (T-mobile)

464XLATの動態展示ブース



464XLATの経緯


2007/07	· RFC2766 (NAT-PT) Obsolete
2003/06	· CGN (NAT444) 導入が総務省報告書に採用
2003/07	· CGN (NAT444) I-D発行
2008/07	· Dual Stack Lite I-D発行⇒RFC6333(2011/08)
2008/10	· A+P(aplusp) I-D発行⇒RFC6346(2011/08)
2008/10	· JPIX社内検討開始
2008/12	·「IPv6v4エクスチェンジサービス」の検討開始を発表
2010/07	·JPIX顧客向け実験サービスを開始
2011/04	· RFC6145、RFC6146 発行
2011/10	· 464XLAT I-D発行
2012/02	· 464XLAT がWorking Group Document として承認


IPv6v4 エクスチェンジサービスのコンセプト

- The Core of Internet Community
- ◆464XLAT 方式を用いて、ISP 様での IPv6 サービス 展開および IPv4 アドレス枯渇対策をサポートする。
- ◆ISP 様での IPv4 アドレス枯渇問題に関する負担削減を実現させる為、ISP 様において、NAT 設備 (CGN)を構築・運用する必要が無いサービス提供形式とする。

IPv6v4 エクスチェンジサービス(464XLAT)概略図

